Nadendla bhaskara rao vs ntr

భాస్కరాచార్యుడు

సనాతన భారతదేశం కన్న గణిత శాస్త్రవేత్తలలో భాస్కరాచార్యుడు చిరస్మరణీయుడు. ఇప్పటికీ ఇతను కనుగొన్న కొన్ని గణితసూత్రాలు పాశ్చాత్య శాస్త్రవేత్తలను ఆశ్చర్యంలో పడవేస్తున్నాయి. చిక్కుముడి గణిత సమస్య లను సంధించడంలో భాస్కరులు అగ్రగణ్యులు. పాశ్చాత్య ప్రపంచం ఇంకా గణితంలో ఓనమాలు దిద్దుకుంటున్న సమయంలోనే బీజగణిత, గ్రహగణితం మొదలగునవి కనుగొన్నారు.

భాస్కరులు సా.శ. సంవత్సరంలో మహారాష్ట్ర లోని విజ్జదిత్ (విజ్జలబిడ)(విజయపురం) అనే గ్రామంలో జన్మించాడు. భాస్కరుడు బ్రాహ్మణుడు, శాండిల్య గోత్రజుడు. మహేశ్వరుని తనయుడు, మనోరధుడి మనుమడున్ను. ఇతని గ్రంథాల్లో ఎక్కువగా వైష్ణవపరంగా ప్రార్థనునులుండవల్లనైతేనేం, ఆచార్యశబ్దం నామాంతంఉండడంవల్ల నైతేనేం కొందరీతడు వైష్ణవుడన్నారు. కానీ ఆచార్యశబ్దం కేవలం ఆతని పాండిత్యము లోని ఉత్కృష్ణతను తెలియజేసేదే ఐ ఉంటుంది.

చిన్నప్పటి నుండే గణితంలో అనేక పరిశోధనలు ప్రారంభించాడు. వీరు ప్రపంచప్రఖ్యాతి గాంచడానికి కారణమైన సంఘటన ఒకటుంది.

అదేమంటే భాస్కరులు జ్యోతిష్యంలో మంచి దిట్ట. ఇతను ముహూర్తాలు లెక్కపెట్టే పద్ధతి ఏమిటంటే కుండలలో ఇసుక, నీళ్ళు వేసి వాటికి క్రింద చిన్న చిల్లులను పెట్టి ఆ కుండలను ఒకదానిపై ఒకటి ఉంచి వాటిలోని నీటి చుక్కలు క్రిందకు పడే సమయం బట్టి ముహూర్తాలను, శుభాశుభాలను లెక్కించేవాడు.

ఇలానే ఒకసారి తన కుమార్తె (పేరు లీలావతి) పెళ్ళి కొరకు ముహూర్తం నిర్ణయించాడు. తన కుమార్తె జాతకంలో వైధవ్యం ఉన్నదని తెలుసుకొని దానిని పోగొట్టడానికి తనే స్వయంగా ముహూర్తం నిర్ణయించాడు. కాని భగవత్ సంకల్పం మరో విధంగా ఉంది. ముహూర్త నిర్ణయానికి ముందు లీలావతి ఒక రోజు ఆడుకుంటూండగా తన ముక్కుపుడక లోని ముత్యం ఆ కుండలలోని పై కుండలో జారవిడుచుకొంది.

ఆ ముత్యం చిల్లుకు అడ్డుపడి నీటిచుక్కల లెక్క, పడు సమయం మారింది. దీని వలన భాస్కరులు పెట్టిన ముహూర్తం తారుమారయ్యి లీలావతికి పెళ్ళైన సంవత్సరం లోనే భర్త చనిపోయాడు. ఈ దుఃఖం భరించలేక పోయిన భాస్కరులు తను, లీలావతి ఆ దుఃఖం నుండి బయటపడడానికి లీలావతికి గణితం నేర్పించి తను కూడా గణితంపై తీవ్ర పరిశోధన చేసాడు. ఈ పరిశోధనల వలనే ఎన్నో కొత్త గణిత ప్రక్రియలు, సిద్దాంతాలు కనుగొని ప్రపంచ ప్రఖ్యాతుడయ్యాడు.

తన కుమార్తెకు కూడా పేరుతెచ్చి పెట్టాడు.

భాస్కరుని వంశ వృక్షము:

త్రివిక్రమ > భాస్కరభట్ట> గోవింద> ప్రభాకర> మనోరధ> మహేశ్వర> భాస్కరాచార్య> లక్ష్మీధర.

సిద్దాంత శిరోమణి గ్రంథం

[మార్చు]

సా.శ. వ సంవత్సరంలో రచించిన "సిద్దాంత శిరోమణి" అను గ్రంథం భాస్కరులకు ఖ్యాతిని గణిత ప్రపంచానికి అమూల్యమైన కానుకను అందించింది.

భాస్కరాచార్యునకు ప్రమాణము బ్రహ్మగుప్త సిద్ధాంతము. ఇతడు శిరోమణి రచనకు విషయాలను చాలావరకు శ్రీపతి గ్రంథాలనుండి గ్రహించాడు. శ్రీపతిగ్రంధమైన సిద్ధాంత శేఖరము లోని కొన్ని శ్లోకాలే స్లల్పమార్పులతో శిరోమణియందు కనబడతాయి.

ఇందులో భాగాలు నాలుగు. అవి

  • 1. లీలావతి(అంక గణితం
  • 2. బీజగణితం
  • 3.

    గోళాధ్యాయ(గోళాలు, అర్దగోళాలు)

  • 4. గ్రహగణితం (గ్రహాలకు, నక్షత్రాలకు సంబంధించినది)

భాస్కరాచార్యుని లీలావతి గణితం అనువాదాన్ని, వ్యాఖ్యానాన్ని వ్రాసిన వారు విద్వాన్ తెన్నేటి.&#;: ప్రచురణ: తెలుగు అకాడెమి. అందులోని కొన్ని ప్రధాన విషయాలు: 12 వ శతాబ్దంనాటి భాస్కరుని రచనలు 19 వ శతాబ్దంలో మాత్రమే పాశ్చాత్య జగత్తు దృష్టికి వచ్చింది. ఇంగ్లండు లోని రాయల్ మిలిటరీ అకాడెమిలో గణిత శాస్త్ర ఆచార్యుడు చార్లెస్ హట్టిన్ (–) రచించిన ఆంగ్ల గ్రంథంలో రెడవది బీజ గణిత చరిత్ర.

అందులో - పుటలు "భారతీయ భీజ గణితం" అనే శీర్షికకు కేటాయించడం జరిగింది. దాంతో భారతీయ గణితాన్ని గురించి భాస్కరుని గురించి ఆరోజుల్లో ఐరోపా అంతటా పెద్ద సంచలనం రేకెత్తించింది. హాట్టన్ తన గ్రంథంలో భీజ గణిత ప్రసక్తిలో ఒక చోట ఇలా వ్రాశాడు. మూల సంస్కృత ప్రతి మార్జిన్ లో ఈ క్రింద చూపి నాట్లు నాలుగు లంబ కోణ త్రిభుజముల మధ్య ఒక చదరం గల పటం ఉంది.

వివరణ ఇవ్వలేదు.

పైతాగరస్ సిద్దాంతనికి వందకు పైగా నిరూపణలున్నాయ్. అన్నింటిలోకి ఇది అతి సంక్షిప్త నిరూపణ.

చదరం A B C D లో కోణం ABC వంటి సమాన వైశాల్యం గల 4 లంబ కోణ త్రిభుజాలున్నాయి. ఒక్కొక్క దాని వైశాల్యం 1/2 ab, చతురస్త్ర భుజం = C చతురస్త్ర వైశాల్యం C squire = 4 1/2 ab + (a- b) squire,,, == 2ab + (a-b)squire = a squire + b squire ..

ఈ అందం ఇంత సులువు నిరూపణ మరే నిరూపణలోకు కాన రావు. భాస్కరుడు తనకంటే మూడు శతాబ్దాల పూర్వం మైసూరులో నివసించిన గణిత సార సంగ్రహ మనే గొప్ప గ్రంథం రచించిన దక్షిణ భారతీయ పండితుడు మహావీరాచార్యుని గురించి భాస్కరునికి తెలిసి వుంటే భాస్కరుని రచనలు మరింత లోతులను చూసి వుండేవి.

"18వ శతాబ్దం వరకు గణిత ప్రపంచంలో N x squire + 1 = y squire. దీన్నె ఇప్పుడు " పెల్" సమీకరణం అని అంటున్నారు.

Bhaskaracharya biography in telugu language andhra pradesh pdf భాసురాచార్యుడు: జీవితాన్ని గణితశాస్త్రానికే సమర్పించుకున్న శాస్త్రవేత్త. ఇతడు కర్ణాటక లోని 'బిజ్జదబిడ' గ్రామంలో జన్మించాడు. క్రీ.శవ సంవత్సరంలో జన్మించాడు. అసాధారణ ప్రజ్ఞాపాటవాలు గల గణితశాస్త్రవేత్త. జ్యోతిషశాస్త్రంలో కూడ కాపు వైదుష్యం కలవాడు. ఈయన 30యేళ్ళ వయస్సులోనే “సిద్దాంత శిరోమణి" అనే గణితశాస్త్ర గ్రంథాన్ని రచించాడు.

సా.శ. లోనే భాస్కరుడు దీని సాధిండంతో తాను రూపొందించిన 'చక్రవాక ' పద్ధతిని ప్రదర్శిస్తూ ఉదాహరణగా 61 X squire + 1 + y squire అనే సమీకరణాన్ని సాధించి చూపాడు. 17వ శతాబ్దంలో గాల్వాస్, అయిలర్ లాంగృంజ్ లు రూపొందించిన విలోమ చక్రీయ పద్ధతి, (ఇంవర్స్ సైక్లిన్ మెథడ్) అంటున్న దాన్ని న్యాయంగా భాస్కర సమీకరణం అనాలి " అని ప్రసిద్ధ గణిత చరిత్ర కారుడు కాటర్ ఉద్గాటించడము చాల సమంజసంగా ఉంది.

క్షేత్ర గణితం: ఆచార్యుడు భుజాల క్రమ త్రిభుజాల పరిశీలన ఆధారంగా "పై" విలువ గణించాడు. భారతీయ గనిత శాస్ట్ర చరిత్రలో బొలి సారిగా గోళ్ ఉపరి తల వైశాల్యాన్ని ఘన పరిమాణాన్ని సూత్రీకరించాడు. పైతారస్ త్రిక సంఖ్యలు ( ఉదా: 3,4,5,12,13 మొదలగునవి) ఉత్పాదనకు బ్రహ్మగుప్తుడు చెప్పిన సూత్రంతో బాటుమరింత సరళమైన రెండు రూపాలను అవిష్కరించాడు. 16 వ శతాబ్దందాక ఐరోపాలో పెద్ద సంఖ్యలు వ్రాసే సాంకేతిక విధానమేది లేదు.

13 వ శతాబ్దానికి పూర్వం ఋణ సంఖ్యలు, బిన్నాలు, ఇంకా ఉన్నత గణీత భావనలు అక్కడి వారి ఆలోచన లోనికి రాలేదు. అలాంటి కాలంలో భాస్కరాచార్యుడు తన రచనల్లోచూపించిన ఇంటటి పురోగతి అసాధరణమే అనాలి.

ఆచార్యుల వారి రచనలపై వ్యాఖ్యానాలు గాని, స్వతంత రచనలు గాని రాలేదు. కారణాలు ఏమైనా ఆయన అడుగు జాడల్లో స్వతంత్ర సిద్దంతాల వైపు దృష్టి సారించే ప్రయత్నాలు జరగ లేదు.

దీనితో భారతీయ గణిత జ్యోతి కొడి గట్టినట్లయింది. ఆచార్యుల వారి ఆలోచనలు తిరిగి అనేక శతాబ్దాల అనంతరం మరెక్కడో "న్యూటన్"తో ప్రారంబమై వికాశ వైభవాలకు కొత్త పుంతలు ఏర్పడినాయి. సంస్కృత గ్రంథాలలో నిక్షిప్తమై మరుగున పడిన ప్రాచీన భారతీయ సంస్కృతుల్ని విజ్ఞానాన్ని వెలుగు లోకి తెచ్చి లోకానికి చాటిన మహానీయ పాశ్చ్యాత్య పండితులెందరో ఉన్నారు.

మాక్స్ ముల్లర్, పోపనార్ జోంస్, వితియాస్, ప్రాటీ, డేవిస్ హట్టన్ కోల్ బ్రూక్ లీలావతి గణితాన్ని యదా తదంగా వ సంవత్సరంలో ఆంగ్లంలోకి అనువదించాడు.

  • Bhaskaracharya biography in telugu language andhra pradesh youtube
  • Vietnamese language
  • Bhaskaracharya biography in telugu language andhra pradesh download
  • అచార్యుల వారు వివరించక, విదిచిన వివరాలు విషయాలు 1. నిష్పత్తి, కాసాగు, గాసాగు, విస్తృతగా నివియోగించారు. వివరణ ఇవ్వలేదు. 2.వితత భిన్నాలు, ఉపసరణలు వినియోగించారె గాని వివరణ ఇవ్వలేదు. 3. దశాంశ భిన్నాల ప్రస్తావన లేదు. 4. ప్రపంచ ప్రసిద్ధి పొందిన - ప్రచారంలో వున్న check of NINE - 9 హిందు గణితం లోనిది. కాని దీన్ని ఆచార్యుల వారు విస్మరించారు.

    కారణ మేమయి యుండునో. 5.,అచార్యుల వారు తన్ను అవిష్కరించిన సూత్రాలను ఎలా అవిష్కరించారో చెప్పలేదు. 6. సున్నాను అనంతాంసక (infinitesimal) రాసిగా భావించి లెక్క చూపారే గాని (a x 0 =a) / 10 ఆ సంగతి ఏమి చెప్పలేదు.

    భాస్కరాచార్యుల వారి సంఖ్యాస్థాన సంగ్నలు: " ఏక దస శత సహస్త్రా యుత లక్ష ప్రయుత కోటయ క్రమశ్: అర్బుదయజ్ణ ఖర్య నిఖర్య మహా పద్మ శంఖ వస్త స్మాత్ జలధిశ్చాంతం,మద్యం పరార్దమితి దశగుణోత్తరాసంజా; సంఖ్యాయా: స్థానానాం వ్వవహారార్థం కృతా పూర్వై: "

    తాత్పర్యం: సంఖ్య లోని అంకెల స్థానాలు కుడినుండి ఎడమకు ('అంకనా వామతో గతి:) ఉత్తరోత్తరంగా దశగుణితాలుగా ( పదింతలుగా) ఒకత్లు, పదులు, వందలు, వేలు, ప్రయుతాలు (పది లక్షలు - మిలియన్, కోట్లు, అర్బుదాలు, అబ్జాలు, ఖర్వములు, నిఖర్వములు, మహా పద్మాలు, (ట్రిలియన్లు) శంఖాలు, జలధులు, అంత్యాలు, మధ్యమాలు, పరార్థాలు, అనే పేర్లతో పూర్వాచార్యులు వ్వవహరించారు.

    ఆంగ్ల భాష ద్రావిడ భాషల్లో ఈ పద్ధతి గమనించండి. ఆంగ్ల భాష ద్రవిడ భాషల్లో ముందుగా ఒకట్ల స్థానం, తర్వాత పదుల స్థానం వస్తుంది. ఉదా: చతుర్దశి (సంస్కృతం, చౌ బీస్ హింది.. ఇరవై నాలుగు అని అర్థం.) తెలుగు, ఇంగ్లీషులో\ ఇరవై నాలుగుకు తెలుగులో ఇరవై నాలుగు ఇంగ్లీషులో టొంటి ఫోర్. అని అంటాము గదా ( దీన్ని మరొక్కసారి చదివి గమనించండి)

    దీన్ని ఒక శ్లోకంలో ఉదాహరణం: దమ్మత్రయం య: ప్రథమే హ్ని దత్త్వా దాతం ప్రవృత్తాద్విచయేనతేన శతత్రయం షష్ట్యధికం ద్విజెభ్యో దత్తం ర్టిర్ద్వ సైర్వదాశు|| తాత్పర్యం: ఒక దాత మొదటి రోజు 3 దమ్మాలు ఆపై ప్రతి దినం 2 దమ్మాలు చొప్పున పెంచుతూ మొత్తం దమ్మాలు దానం చేశాడు.

    అ దాన క్రియ ఎన్నాళ్లు కొనసాగిందో తెలుపుము? వ్వాఖ్య: S = అనుకుందాం d = 2; a =3; n? పై సూత్రం ఉపయోగిస్తే n = squire root of 2- 2 +( 1/2)squire root - 3+11/2 x 2 = squire root +4 -2 = 38 -2 /2 = 18 రోజులు. (ఈ సూత్రం ఎంత సులబ గ్రాహ్యమో గమనించండి) పర దేశీయులు కనిపెట్టిన సూత్రంగా చెప్పబడుతున్న 'పైథాగరస్ సిద్దాంతంగా చెప్పబడు తున ఈ సిద్దాంతానికి మన భాస్కరాచార్యుడు తన కాలంలో ( అనగా పైథాగరస్ కన్నా ముందె) చెప్పిన ఒక శ్లోకం చూడండి.

    (ఆ శ్లోకంలోని ఒక లెక్క ఇది.) " వంశాగ్ర మూలాంతర భూమి వర్గో వంశోదృతస్తేన వృఘగ్యుతోనౌ | వంశౌతదర్దే భవత: క్రమేణ వశస్య ఖండే శ్రుతికోటి రూపే&#;:

    ఈ శ్లోకానికి వివరణ: కోటి (లంబ) కర్ణాల సంకలితం, భుజం, తెలియగా లంబాన్ని కర్ణాన్ని వేరు పరచుటకై సూత్రం: ఈ శ్లోకం తాత్పర్యం: కొంత ఎత్తున విరిగి పడి పోకుండా నేల వ్రాలిన వెదురు గడ భూమితో చేరి లంబ కోణం త్రిభుజం రూపానికి అనుకృతి అయినది.

    విరగక ముందున్న వెదురు పొడవు కర్ణ లంబాల యోగం, విరిగిన చోట ఎత్తు లంబం.

  • Nadendla bhaskara rao son
  • N. bhaskara rao previous offices
  • Nadendla bhaskara rao is alive or not
  • Nadendla manohar
  • వ్రాలిన భాగం కర్ణము. భూమి వర్గాన్ని వంశం (వెదురు గడ ప్రమాణం) తో బాగించి ఈ లబ్ధాన్ని వేరుగా వంశానికి కలిపి, తీసి వేసి వచ్చిన ఫలితాన్ని, సగం చెస్తే కర్ణము, లంబ రూపంలో వున్న వంశ (వెదురు) ఖండాల కొలతలు తెలుస్తాయి. దత్తాంశాలు: కర్ణం A B లంబం A C కలిసి 32 . భూమి + ఈ సూత్రానుసారం, లంబం = A C = 1/2 ( =16 squire by 3) = 12 మూరలు, కర్ణం AD = 1/2 ) 32+16 squire/ 32) సమాధానం = 20 మూరలు ఇదెంత సులభ గ్రాహ్యమో మరొక్క సారి అవగాహన చేసుకొని పరిశీలించండి.

    దీన్ని బట్టి మనకు అర్థమయ్యేదేమంటే గతంలో భారతదేశంలో.. సంస్కృత భాష దేవ భాష యని, దానిని నిమ్న జాతులెవ్వరు నెర్వ రాదని, చదవరాదని నియమం వుడేది. కనుక అందులోని మహత్తర విషయాలు బహ్య ప్రపంచానికి తెలియక అలా అంధకారంలో వుండి పోయాయి.

    పైథాగరస్ సిద్దాంత సంబంధిత మారో ఉదాహరణ: సమస్య: శ్లోకము:

    అస్తి స్థంబతే బిలం తదుపరి క్రీడాశిఖండి స్థిత:, స్థంబే హస్తన వోచ్చితే త్రిగుణిత స్తంభ ప్రమాణాంతరే, దృష్ట్యాహిం బిలామావ్రజంత మపతాల్ తర్విక్ సతస్యోపరీక్షితం బ్రూహితయోర్చిలాత్ కతికర: సామ్యేన గత్యోర్యతి: ||

    తాత్పర్యం: సమతల భూమి పై 9 మూరల ఎత్తు గల స్తంభం క్రిందనే ఒక సర్ప బిలం ఉంది.

    స్థబానికి 27 మూరల దూరంలో ఒక పాము బిలం వైపు వస్తున్నది.

    Tamil language భారత ప్రామాణిక రేఖాంశమైన 82°30' తూర్పు రేఖాంశం రాష్ట్రంలోని కాకినాడ మీదుగా పోతుంది. రాష్ట్రానికి వాయవ్యంగా తెలంగాణ, ఉత్తరాన ఛత్తీస్‌గఢ్, ఈశాన్యంలో ఒడిషా, దక్షిణాన తమిళనాడు, పశ్చిమాన కర్ణాటక, తూర్పున బంగాళాఖాతం ఉన్నాయి. కేంద్రపాలితప్రాంత భూభాగం పుదుచ్చేరికి చెందిన యానాం రాష్ట్రం హద్దులలో ఉంది.

    స్థంబాగ్రం పై కూర్చున్న ఒక నెమలి పామును చూసి కర్ణ మార్గంగా దూకి వచ్చి పామును మధ్యలోనే పట్టివేసింది. పాము - నెమలి ఒకే వేగంతో పయనించాయను కుంటే బిలానికి ఎంత దూరంలో నెమలి పామును పట్టుకో గలిగింది.

    వివరణ: AC స్తంభం. = 9 మూరలు.

    Bhaskaracharya biography in telugu language andhra pradesh youtube: భాసురాచార్యుడు: జీవితాన్ని గణితశాస్త్రానికే సమర్పించుకున్న శాస్త్రవేత్త. ఇతడు కర్ణాటక లోని 'బిజ్జదబిడ' గ్రామంలో జన్మించాడు. క్రీ.శవ సంవత్సరంలో జన్మించాడు. అసాధారణ ప్రజ్ఞాపాటవాలు గల గణితశాస్త్రవేత్త. జ్యోతిషశాస్త్రంలో కూడ కాపు వైదుష్యం కలవాడు. ఈయన 30యేళ్ళ వయస్సులోనే “సిద్దాంత శిరోమణి" అనే గణితశాస్త్ర గ్రంథాన్ని రచించాడు.

    A = నెమలి స్థానం. D = సర్ప స్థానం, C = సర్ప బిలం.(పాము, నెమలి ఈ రెండిటది సమాన వేగం.) అంటే A B = B C = C, C D = C B +B D = a + c సూత్రం ప్రకార: భుజం a = 1/2 (CD - AC squire/CD కర్ణం c = 1/2( CD + AC squire) కాబట్టి a = 1/2 (27 - 81/27) = 12 కనుక పాము బిలానికి 12 మూరల దూరంలో వుండగా నెమలి దాన్ని పట్టుకొన్నది. సూత్రం వుపయోగించ కుండా చేయాలంటే a + c = 27, b = 9, a =&#;?

    c = 27 _ a కాబట్టి a squire + 9 squire = ( 27 _ a) squire _ 27 square _m a+ 9 squire therefore a = 27 squire by = (27 + 9) (27 _9) by =

    అదే విదంగా వృత్తాకార క్షేత్ర గోళం: దీనికి ఒక ఉదాహరణ ఆచార్యుల వారు ఎలా పరిష్కరించారో చూడండి. శ్లోకం వృత్త క్షేత్రే కరణ సూత్రం వ్వాసే భనందాగ్ని హతే విభక్తే ఖ బాణ సూర్యై పరిధిస్స సూక్ష్మ ద్వావీశతి ఘ్నే విహృతేధవైలై: స్థూలోధవాస్వా ద్వ్యవహార యోగ్య: || పై శ్లోకానికి తాత్పర్యము: వృత్త క్షేత్ర వ్వాసాన్ని / తో గుణించగా వచ్చినది పరిధి.

    Bhaskaracharya biography in telugu language andhra pradesh భాస్కరులు సా.శ. సంవత్సరంలో మహారాష్ట్ర లోని విజ్జదిత్ (విజ్జలబిడ) (విజయపురం) అనే గ్రామంలో జన్మించాడు. భాస్కరుడు బ్రాహ్మణుడు, శాండిల్య గోత్రజుడు. మహేశ్వరుని తనయుడు, మనోరధుడి మనుమడున్ను. ఇతని గ్రంథాల్లో ఎక్కువగా వైష్ణవపరంగా ప్రార్థనునులుండవల్లనైతేనేం, ఆచార్యశబ్దం నామాంతంఉండడంవల్ల నైతేనేం కొందరీతడు వైష్ణవుడన్నారు.

    కచ్చితంగా వుంటుంది. వ్వాసాన్ని 22 / 7 తో గుణిస్తే పరిధి మదింపు (సుమారు) విలువ లభిస్తుంది. నిత్య వ్వవహారానికిదే ఉపయోగిస్తుంది. ఆధునిక గణితంలో పరిధికి - వ్వాసానికి గల నిష్పత్తిని "పై" అనే గ్రీకు అక్షరంతో సూచిస్తున్నారు. ఆ చార్యుల వారు "పై" సూత్రంలో పరిధి / వ్వాసం = / = ని సూక్ష్మ విలువ అన్నారు. "పై" = 22 /7 = ను స్థూల విలువ అని నిత్య వ్వహారానికి ఇది చాలునని అన్నారు.

    అలాగే C = "పై" d అని సూత్రీకరించారు.

    పైన చెప్పిన ఉదాహరణను పూర్తిగా అర్థం చేసుకోవాల్నుకుంటే దానికి కొంత వివరణ కావాలి. లేకుంటే అర్థం కాదు. అదే మంటే ఆచార్యుల వారు సంఖ్యలకు పద సంకేతాలను వాడాతారు. అది అతని విధానము. ఉదాహరణ: పైన శ్లోకంలో ఒక పదం వచ్చింది. అది "భనందాగ్ని." ఆ పదానికి అర్థం: అని. ఎలాగంటే "భ" అనగా 27 నక్షత్రాలు, "నంద" అనగా నవనందులు అనగా 9, "అగ్ని" అనగా త్రేతాగ్నులు అనగా 3 .

    ఈ మొత్తాన్ని కుడినుండి ఎడమకు చదవాలి. కనుక "భనందాగ్ని" అనగా

    ఈ గ్రంథం సున్న (0) యొక్క ధర్మాలను, "పై" యొక్క విలువను, వర్గాలను, వర్గమూలాలను, ధనాత్మక-ఋణాత్మక అంకెలను, వడ్డీ లెక్కలను, సమీకరణాల గురించి తెలియజేస్తుంది., పాశ్చాత్యులు గత శతాబ్దంలో కనుగొన్నామనుకొంటున్న కరణులు, వర్గ సమీకరణాలను, అనంతం (ఇంఫినిటి)ని కనుగొని చర్చించి, వాటిని సాధించింది.

    సమీకరణాలను వాటి 3వ, 4వ ఘాతం వరకు సాధించింది. త్రికోణమితిని కూడా చాలా చర్చించింది.

    మన దౌర్భాగ్యం, అలసత్వం కొద్దీ గురుత్వాకర్షణను న్యూటన్ కనుగొన్నాడని పాశ్చాత్యులు చెబితే అదే నిజమని అనుకొని మోసపోతున్నాము. కాని ఈ గ్రంథంలో(న్యూటన్ కన్నా సంవత్సరాల పూర్వమే) భాస్కరుల వాక్యాలను గమనించండి.

    "వస్తువులు భూమి యొక్క ఆకర్షణ వలనే భూమిపై పడుతున్నాయి.

    కాబట్టి భూమి, గ్రహాలు, చంద్రుడు, నక్షత్రాలు చివరికి సూర్యుడు కూడా ఈ ఆకర్షణ వలనే వాటి కక్ష్యలలో పడిపోకుండా ఉన్నాయి. వాటికి కూడా ఆకర్షణలు ఉన్నాయి."

    ఇంత స్పష్టంగా వీరు చెప్పినా ఇంకా మనం మన ప్రాచీన శాస్త్రవేత్తల గొప్పతనాన్ని తెలుసుకొనలేక పోతున్నాము.

    తర్వాతి కాలంలో వీరు ఉజ్జయిని లోని ఖగోళ గణితశాస్త్ర సంస్థకు అధ్యక్షుడయ్యారు.

    Bhaskaracharya biography in telugu language andhra pradesh today

    భాస్కరులు సా.శ. సంవత్సరంలో మహారాష్ట్ర లోని విజ్జదిత్ (విజ్జలబిడ) (విజయపురం) అనే గ్రామంలో జన్మించాడు. భాస్కరుడు బ్రాహ్మణుడు, శాండిల్య గోత్రజుడు. మహేశ్వరుని తనయుడు, మనోరధుడి మనుమడున్ను. ఇతని గ్రంథాల్లో ఎక్కువగా వైష్ణవపరంగా ప్రార్థనునులుండవల్లనైతేనేం, ఆచార్యశబ్దం నామాంతంఉండడంవల్ల నైతేనేం కొందరీతడు వైష్ణవుడన్నారు.

    వీరు మరణించిన సంవత్సరం సా.శ.

    భారతదేశపు రెండవ (భాస్కర-1), ఐదవ (భాస్కర-2) కృత్రిమ ఉపగ్రహాలకు వీరి పేరు పెట్టారు.

    బయటి లింకులు

    [మార్చు]